
__
 - 1 -

COLLECTION BUILDING: FEATURES AND OPTIONS

COLLECTION BUILDING: FEATURES AND OPTIONS

Verity collections are indexed meta-data about a set of documents that have been processed so they are
retrievable by Verity Products. Collections are created using Verity utility programs. In this section we will cover
two of these indexers, the vspider utility and the mkvdk utility. These indexers are both very effective in locating
the important attribute and search information through sophisticated formatting and filtering tools. During
processing, indexes are populated and automatically optimized to enable fast searching of:

• Words contained in the documents
• Attribute information about the documents like their titles or authors

A collection is a series of indexes, which store data about your documents. Stored efficiently within each index,
this data consists of:

• Location information
• Standard fields available for searching
• Custom fields you define for your documents
• All the words in each document and word location information to allow concept, Boolean and

proximity searching.

THE COLLECTION DIRECTORY

The collection directory contains all the files that are needed to provide access to your documents or to manage
the collection. The main job of the collection is to store information about the document (attributes) and to
store the word index. Because you index at different times, or index a large amount of data, the collection is
optimized into smaller components called partitions, each having these two indexes (attributes and words) for a
group of documents in the collection. A collection can have many partitions. Depending upon how the collection
was created, there are other directories in the collection that store data. Here is an overview of the basic role of
these various collection directories. Remember that all collections do not have all of the same sub-directories,
they only have the ones they need.

The ASSISTS Directory stores spanning word lists and information about the collection The PARTS
Directory stores partitions, consisting of two key elements, the “.ddd” which holds the attribute information and
the “.did” which holds the word index.

The .ddd file is a binary list of all of the documents in a partition. There is a separate record for each document,
which includes several internal fields (like the document name) along with user-defined fields. The .did file is a
binary database of all the words in all of the documents in a partition. If the documents are large and the partition
is large, the .did files will be quite large as well. The general rule of thumb is that the .did will probably be about
40% of the size of the original documents.

The PDD Directory stores the partition index, which manages all the partitions in the collection. The STYLE
Directory stores configuration files. The TRANS Directory stores transaction files used in auto-administration.
Other collection directories you may find, are the TOPICIDX Directory which stores topic indexes for each
partition, TDE Directory which stores work files for Topic Document Entry, WORK Directory which stores
task files used in auto-administration, MORGUE Directory which stores outdated files that will be deleted.

__
 - 2 -

THE ROLE OF STYLE FILES

Collections are configured through style files you choose to include in your style directory. They can be updated
continuously while applications are searching over them and document indexing can occur continuously.
Collections are automatically serviced for optimization and housekeeping and are automatically repaired when
certain error conditions occur (like loss of state information).

• Style files configure the series of indexes storing data about documents and your environment
• The choices made in style files direct how indexing utilities will create indexes and the guidelines for

doing work
• Verity products ship with a special style directory which allows you to incorporate many types of

documents in your collection, and capture standard field and zone information, without having to do
any additional work.

INDEXING WITH VSPIDER

The SEARCH’97 Information Server includes a command-line indexing spider that can create collections from a
variety of document types, including:

• ASCII text documents. This includes text documents and documents in Internet e-mail or unused
news format.

• HTML or SGML documents
• Adobe Acrobat documents..
• WSIWYG documents. This includes documents supported by Inso’s MasterSoft filter and viewer kit,

including Microsoft word, WordPerfect and other formats.

The spider can automatically index all of these various document types into a single master collection. Depending
on the style files you select, each document may be internally stored in one or more collections. This greatly
simplifies collection management and speeds collection information to users.

Following are listed some of the more common commands for building a collection or maintaining a collection
using vspider. This is a very helpful utility for routine collection building, for instance at night, when you can set it
to run in cron, without having to issue indexing commands directly. All commands must be entered on one line:

Creating a New Collection

 vspider -collection mycoll.clm -style verity/s97is/locale/english/styles
 -start http://www.yoursite.com

Re-indexing a Collection

 vspider -collection mycoll.clm

Using domain and exclude options

 vspider -collection mycoll.clm -style verity/s97is/locale/english/styles
 -start http://www.yoursite.com -exclude *secrets* -domain verity.com

__
 - 3 -

Using the proxy option:

vspider -collection mycoll_2.clm -style verity/s97is/locale/english/styles
 -start http://www.verity.com -proxy proxysvr: 8010

Using an authorization file (for password challenge)

vspider -collection mycoll_3.clm -style

verity/s97is/locale/english/styles
 -start http://www.verity.secure.com/index.htm -auth authfile.txt

VSPIDER Options

-style Style directory (if metaweb add .clm to collection name

-start Starting URL or URL’s for the spider to follow
 -start http://www.verity.com http://www…

-collection Path to where the collection is to be created

Indexing options:

-allold forces reparsing of all documents in the collection

-cgiok allows indexing of URL’s containing the ? symbol to permit
indexing
 CGI’s. Default is to exclude these.

-domain limits indexing to specified domains

-exclude excludes files matching a specified expression (exclude *bat
*exe)

-host limits indexing to specified hosts.

-include includes files matching a specified expression (include *rpt)

-maxdocsize maximum size of document to index (default is 1 megabyte - enter
 values in kilobytes)

-mimeexclude specifies mime types to be excluded. -mimeexclude text/html

-mimeinclude default is to include all mime types - specify only one

-nofollow disables the following of href commands

-norobo specifies that any robots.txt files encountered are ignored.
 The default is to honor all robots.txt files.

-noupdate disables updating of any documents already in the collection

-pathlen allows you to specify how far down a URL or directory path the
 spider should go. The web host name is not included
 (www.verity.com:9000/) but elements following it are. Each slash
 counts like this/that/then/what would be -pathen 4.

__
 - 4 -

-submitsize specifies the number of documents to be submitted at one time
 (default is 50)

-topicset specifies the topicset to be used for indexing the collection

-unlimited specifies no limits are to be placed on the spider, if neither
 –host or -domain is specified. The default is to limit based on
 the host of first URL listed. Also removes the 1 megabyte
 maxdocsize default unless specified.

-verbose displays summary information for each URL or file accessed.
 Indicates indexed, ignored or failed.

-debug displays debugging-level messages (more than verbose)

-trace provides highest level of information about indexing

-auth specifies the name of the authorization file for sites requiring
 a password

-casesen makes processing case-sensitive so the spider differentiates by
 case

-charmap specifies character map to use

-common specifies path to VDK home

-datefmt specifies import format for date Y-M-D M-D-Y etc.

-help displays syntax options

-language specifies local language

-jobs maximum number of sockets to allocate (default is ten)

-msgdb specifies the path to the ind.msg message database

-noindex specifies to submit, but not index (used with mkvdk-persist)

-noproxy specifies the host listed should bypass the proxy server
 (wildcards ok *.mysite.com)

-proxy specifies the host &port for the proxy server

-purge purges the contents of the collection specified

-repair repairs a damaged collection

-temp specifies directory for temporary files (default is /tmp)

__
 - 5 -

CREATING COLLECTIONS WITH MKVDK

The process of building a collection with mkvdk is accomplished in three steps:

• Build the collection style
• Locate the documents to be indexed and optionally put their names into a file list (flist).
• Run the mkvdk utility that creates the collection from the style files, for all the documents in the flist,

adding other parameters you wish to include to improve searching or performance.

The easiest way to create a new style is to borrow from an existing style and make any necessary changes or
additions. The second step, building an flist, can happen in one of many ways. You could just type the names and
paths directly into an ASCII file and use that as your flist, or you can use external utility programs that will help
you build the list automatically. The third step requires that you run the mkvdk utility with the command-line
arguments to create the kind of collection you desire. Housekeeping and optimization are handled automatically
as the collection is built.

RUNNING MKVDK

On Windows NT, you can run mkvdk from a command prompt window. The mkvdk utility for Windows is a
pure Windows application and cannot be run from DOS so you will need to define properties for it. You can
submit as many documents as you have at once, but there is a limit of approximately 60,000 documents per file.
Be aware that the usual hourglass is not displayed.

 c:\verity\platform_dir\bin\mkvdk -create -collection colls\mk_coll
 -style styles\wysiwyg c:\docs\text1.txt (all on one line)

The mkvdk utility automatically executes the following steps:

1. The specified collection sub-directory and sub-directories are automatically created.
2. The style files used to build the collection are copied from their source directory to the

style directory, below the main collection sub-directory and are parsed and compiled
3. The documents are pre-processed and parsed.
4. The documents are indexed and their word data is stored in the indexes.
5. If a Topic set is given, documents are cross-indexed with the Topic set specified.
6. The indexes are then cross-linked and made accessible to the user, word lists and assist

data is generated.

INDEXING WITH MKVDK

The mkvdk utility is an all-purpose collection creation and maintenance tool. When you use this utility, you
supply the command-line options to tell mkvdk what you want to do. For example, when you are creating a new
collection you will provide different options than when you want to do collection maintenance. On-line help with
mkvdk is available by entering: mkvdk -help. The Collection Building Reference Guide includes a full
description of each of the mkvdk options. Here are some you will use often.

MKVDK Options

-create Creates a collection in the specified -collection directory.
 Creates the directory structure, determines the index contents
 and sets up the collection based on the style file contents.

__
 - 6 -

-style dir Specifies the style directory to be used and is only used with
 the -create option (without this default style files are used)

-description desc Text description of the collection, for example: “Financial

Reports”

-words Builds a word list for each of the individual partitions in
 the collection

-collection path Specifies the path to the collection to create or open

-nolock Turns off file-locking (on by default)

-synch Performs work immediately (rather than default to process in
 background)

-about Shows information about the collection including description
 and last modified

-datapath path Specifies the datapath to use when docs are not located next

to the coll directory

-topicset path Creates a topic index based on the named topic set and stores

it in the collection directory

-mode mode Sets the indexing mode. Valid settings are Generic,
FastSearch, NewsfeedIdx, NewsfeedOpt, BulkLoad, ReadOnly or any custom
mode defined in the style.plc. Chapter 5 of the Collection
Building manual covers these modes.

-help Displays syntax options

-debug Runs mkvdk in debugging mode

-nooptimize Prevents optimization for this instance

-nohousekeep Prevents housekeeping (deleting files that are no longer
 needed) for this instance

-noindex Prevents indexing for this instance

-charmap Names the character set that you want all strings mapped to

for your application

-locale name Names the language you will use to perform searches (english,
 deutsch, francais)

-datefmt format Converts a date field into one of Verity’s date
 representations.
 Can be used with -extract to affect parsing for date fields.
 MDY - US format & the default
 USA - Same as above
 DMY - European format
 EUR - Same as above
 YMD - ISO international format
 YDM - Swedish format

__
 - 7 -

-servlev level Specifies a particular service:
 search - enable search & retrieval
 insert - enable adding and updating documents
 optimize - enable opportunistic optimization
 assist - enable building of word list
 housekeep- enable housekeeping of unwanted files
 delete - enable document deletion
 backup - enable backup (duplicate of the collection
 directory)
 purge - enable background purging to delete contents
 without deleting the collection
 repair - enable collection repair
 index - same as setting insert & delete
 dataprep - same as setting search, index, optimize, assist &
 housekeep

__
 - 8 -

LAB 1: PRACTICING WITH COLLECTIONS

Creating Collections with vspider

1. Under the IS97 directory you will find a main collection directory (colls) and a docs directory which

contains several document subdirectories with various types of documents. In these exercises you will
build collections from both the vspider utility and the mkvdk utility. As you build each collection, you can
create a script (batch file) to capture the various options. It is a good idea to document the features of
each of these commands, because you will be taking all of the files you create with you. Please make sure
you are always logging verbose output (examples are shown below) for each variation.

2. Click Start and open an MS-DOS Command Prompt window for some practice building collections with
vspider. In these exercises you will be building collections from the file system. All of your batch files
should
be created under c:\is97\tools.

a. Move to the tools directory: cd c:\is97\tools

b. Your first vspider batch file (vsbld_1.bat) has been created for you. Open this file and

note the documentation about what is being created. Review the command line (using
 information contained in this section) to identify the options being used, and their
 purpose. Note that the output is being redirected to a log file (called vsbld_1.log) so

you will be able to really review the information provided by the indexer.

echo off
rem This batch file creates a collection called vscoll1 under the
rem IS97\colls directory. It uses the default style files from the IS97
rem styles directory and creates a collection of all docs in docs\doc7

vspider.exe -verbose -collection c:\is97\colls\vscoll1.clm (all on one line)
-style c:\is97\styles -start c:\is97\docs\doc7 > vsbld_1.log

c. Run the batch by entering vsbld_1 at the c:\is97\tools prompt. Remember the output is being

written into a log file, so when the directory prompt returns, take a look at the file by entering:
type vsbld_1.log |more to allow you to page through the log file.

There is a lot of information in this file about how the indexing works. Note these key points in
your log file:

What version of vspider is running…

vspider - Verity, Inc. Version 3.0 (_nti31, May 19 1997)

What you are licensed for…

Info 06/17 23:05:52 (ind005005) Licensed for file walking.
Info 06/17 23:05:52 (ind005006) Licensed for local host spidering.
Info 06/17 23:05:52 (ind005007) Licensed for local domain spidering.
Info 06/17 23:05:52 (ind005008) Licensed for remote spidering.

When the work is beginning…

__
 - 9 -

Verbose 06/17 23:05:52 (ind002002) VDK: (0 ms) Elapsed Retrieval.

The first document is placed in the queue…

Verbose 06/17 23:05:52 (ind010003) Submission enqueued: .\docs\doc7\BANKACT.

An image document is skipped over - based on its mime-type …

Verbose 06/17 23:05:52 (ind020000) Skipping key ..\docs\doc7\BANKACT1.TIF
because of MIME-Type.

The next few documents are placed in the queue…

Verbose 06/17 23:05:52 (ind010003) Submission enqueued:

..\docs\doc7\CLAIMS.TXT.
Verbose 06/17 23:05:52 (ind010003) Submission enqueued:

..\docs\doc7\DEVKIT.DOC.

Work is processed…

Verbose 06/17 23:05:52 (ind002109) VDK Collection: Processed.

Submitted documents information is written to a bulk-submit file…

Progress 06/17 23:05:52 (ind031000) Inserting ..\docs\doc7\BANKACT.
Progress 06/17 23:05:52 (ind031000) Inserting ..\docs\doc7\CLAIMS.TXT.

Document indexing information is prepared to go into the collection…

Verbose 06/17 23:05:52 (ind002002) VDK: BulkInserting into
c:/is97/colls/vscoll1

 (1) from c:/is97/colls/vscoll1/temp/97000000.bif (0, 0).

Appropriate partitions are readied (ddd has field values, did has words)…

Verbose 06/17 23:05:53 (ind002002) VDK: Initializing dataset 00000001.ddd,
 index 00000001.did.

Demographics are captured…

Verbose 06/17 23:05:54 (ind002002) VDK: Totals (43 documents): 375 para
 1173 sent 21312 word (1408 Kb used).

The index is populated and automatically optimized…

Verbose 06/17 23:05:55 (ind002002) VDK: Optimizing database layout.
Verbose 06/17 23:05:56 (ind002002) VDK: (3655 ms) Indexed 43 docs into
 c:/is97/colls/vscoll1/parts/00000001.
Verbose 06/17 23:05:56 (ind002002) VDK: Writing partition index data.
Verbose 06/17 23:05:56 (ind002109) VDK Collection: Processed.
Progress 06/17 23:05:56 (ind002115) Optimizing VDK collection
 c:\is97\colls\vscoll1.
Verbose 06/17 23:05:58 (ind002109) VDK Collection: Processed.

3. One tool we created is the batch file called “peek.” This calls the browse utility on the partition you

just created. Review the commands and then run it by entering peek at the command prompt.
Instructions will be presented on screen. If you want to use this for other collections, you will need to
change the collection name on the second line.

__
 - 10 -

echo off
cd c:\is97\colls\vscoll1\html\parts

echo Press Enter 3-4 times (each is a record), then type Q to quit
echo The file will be called browse.out - in the tools directory
echo It will display when you are finished...
browse 00000001.ddd > c:\is97\tools\browse.out
cd c:\is97\tools
type browse.out |more

4. Another tool we’ve created is the batch file called “run-rc.” This runs a special utility program called

rcvdk, which provides a command line retrieval client. Review the information that is contained in the
collection you just built using this handy tool. Before you use it, you will need to edit the SET
COLLNAME line to reference your collection name.

echo off
SET COLLNAME=vscoll1.clm
cd ..
cd colls
echo This batch file runs a command-line retrieval client program
echo which will allow you to test your collections. Type help to
echo see all of the options or use this primer to get you started.
echo ---
echo a %COLLNAME = attach to the collection called %COLLNAME%
echo s agent = search this collection for the term agent
echo s = perform a null-retrieval
echo r = show the results list
echo v 1 = view the first document (use # to select)
echo quit = exit the rcvdk program
echo ---
echo
echo Now we'll ready your collection and you can have some fun!

c:\search97_nti31\bin\rcvdk %COLLNAME%

The following message will appear:

Attaching to collection: c:\is97\colls\mycoll
Successfully attached to 1 collection.
Type 'help' for a list of commands.

RC>

Type help to view the list of commands, and practice with these a bit on your collection.

5. Create a new collection (vscoll2) and review its contents. Be sure to follow all the steps, making
necessary corrections for your collection name, log files and document directories. Use any of the
documents under the c:\is97\docs directory -- other than doc7, and use the same style directory that
built your first collection.

 a. Copy vsbld_1.bat to vsbld_2.bat
 b. Modify appropriately for the new collection name (vscoll2), log file, docs, etc.
 c. Build your new collection and review the log file

d. Modify the “peek” batch file to point at your new collection and run it, then review the
output

__
 - 11 -

e. Modify the “run-rc” batch file to point at your new collection and test it as you explore other
options provided by the utility.

Updating and Deleting Documents in the Collection

6. Create another collection (vscoll3) for practice with updating and deleting documents. Using vspider,

build this collection as shown below, this time directly from the command line. Note that we are
turning on advanced logging (by adding -trace) to learn more about the indexing process. Again,
redirect the output to a file for your review. Enter the following command line (on one line).

vspider.exe –verbose -collection c:\is97\colls\vscoll3.clm -style c:\is97\styles
-start c:\is97\docs\doc5 -trace > vsbld_3.log

7. Use rcvdk (run-rc) to view your new collection: rcvdk.exe c:\is97\colls\vscoll3.clm (enter)

8. Because information does not remain static, vspider comes with utilities, which allow the updating of

information already in the collection. In this exercise, you will delete a document from the file system
and update the collection. Then you will change a document, update again, and review the changes that
have been made to your collection. Remember that your collection was created using the documents in
the doc5 directory (c:\is97\docs\doc5).

9. Move to the doc5 directory under c:\is97\docs and physically delete the file called “Partnrs2.doc” from

either the command line or from Windows. Run vspider to update the collection as shown below, noting
that there is much less information provided on the command line because you are just updating an
existing collection.

cd c:\is97\colls
vspider.exe -collection vscoll3.clm

10. Using what you already learned about rcvdk, take a look at the collection and note the document has
been deleted.

11. Move back to the doc5 directory (c:\is97\docs\doc5). Edit the “msg12.txt” file and change the date of

the document to today’s date and modify the from field to include your name. Save your changes and
run vspider once more to pick up your changes. One important point to understand about the updating
process is that it only applies to those documents that were already in the collection. When the update
runs, it looks for things that have changed among the collection’s documents, but if you added new
documents to this directory, they would not be picked during the update. If you are adding new
documents to the collection, you must use the -start flag on the command line and we will do this a little
later in this lab. For now, just process your changes:

cd c:\is97\colls
vspider.exe -collection vscoll3.clm

12. Using rcvdk, search for your name.

13. Update your existing collection (vscoll3), adding the documents from the doc1 directory. To add new

documents to an existing collection, you must use the -start flag and point to the directory containing the
documents (either the same one you used before, or a new directory altogether. For example, if you
created a collection for the doc1 and doc2 document directories, then added new documents to the

__
 - 12 -

doc1 directory after the collection was built, you would have to update the collection with the -start flag
to catch those documents in the update process.

cd c:\is97\colls
vspider.exe -collection vscoll3.clm -start c:\is97\docs\doc1

Creating Collections with mkvdk

14. You can also create collections with the mkvdk utility and may need to use this utility to build more

specialized collections. You can choose to take advantage of mkvdk’s maintenance features, which allow
you, for instance, to delete a document from the collection, without removing it from the file system as
you did with vspider. For those of you who are only using Verity’s Enterprise server, mkvdk will be
your only collection building tool.

15. Before using the mkvdk utility, run the edited mkopt_1.bat file (in the tools directory) to create a list of
command-line options available for mkvdk. When finished, review the associated log file.

16. Review the documents in c:\is97\docs\doc6. You have two special file types here. The first one is a file
list called flist.txt. Note that it contains a list of file pointers to the physical location of documents. The
second is called hdr.txt. This is a bulk submit file which already contains field attribute information in a
text file.

17. As with the vspider practice, we have created your first batch file for collection building with the mkvdk

utility, called mkbld_1.bat. Review the commands, noting that this batch file uses a file list. You can
easily create a file list by typing dir *.* /b/s>flist.txt. This creates the flist with full path to your
documents. Execute the batch file, and when it finishes, check the log. While there are many similarities
to the log you saw from vspider, there are also several differences.

echo off
rem This batch file creates a collection called mkcoll1 under the IS97\colls
rem directory. It uses the Verity default style files in the IS97\styles
rem directory. It creates a collection of some docs in docs\doc6 (those
rem that are on the file list) and it indexes the collection against the
rem news topics in IS97\topics. Verbose messaging is turned on as well.
rem Note that the @ sign before the filelist specifies to use it as a list.

c:\search97_nti31\bin\mkvdk.exe -topicset c:\is97\topics\news -verbose
-create -collection c:\is97\colls\mkcoll1 -style c:\is97\styles\autofilt
@c:\is97\docs\doc6\flist.txt >mkbld_1.log

18. Execute this batch file and be sure to use “peek” and “run-rc” to view the results. Keep in mind that you

will also have to make changes to these batch files to point at your new collection. Once you have access
to your collection through RCVDK, try using the expert feature to see more about your documents.
Type help and then type X to enter expert mode. Note that this is a toggle and if you type X again, it will
revert to novice mode. View field information by entering: fields title 30 date 11 vdkvgwkey 25

19. We have included another batch file called mkbld_3.bat that builds a collection from the bulk submit file

(called header) in the docs/doc6 subdirectory. Take a moment to review the structure of this file. This
file contains all the attribute information, which is to be populated in the index. Note that we are
specifying the location in the VdkVgwKey field and that we are using the tag <<EOD>> to indicate a new

__
 - 13 -

document. If you wish to extract field values from documents, you will find this is the easiest and most
efficient way to capture values for your index.

VdkVgwKey: c:\\is97\\docs\\doc6\\rev10.txt
NAME: Review: Dennis the Menace
DATE: 10/25/93
SOURCE: Verity Education
<<EOD>>
VdkVgwKey: ..\\docs\\doc6\\rev11.txt
NAME: Review: Abbott and Costello Meet Frankenstein
DATE: 10/29/93
SOURCE: Verity Education
<<EOD>>

20. Execute mkbld_3.bat file. Again, the log file will open after indexing.

echo off
rem This batch file creates a collection called mkcoll3 under the IS97\colls
rem directory. It uses the style files copied from the default style area
rem and creates the collection using a bulk submit file called hdr.txt
echo ...
echo The log file will open when indexing is finished
echo ______________________________________

mkvdk.exe -verbose -create -collection c:\is97\colls\mkcoll3
-style c:\is97\styles\autofilt -bulk c:\is97\docs\doc6\hdr.txt > mkbld_3.log

type c:\is97\tools\mkbld_3.log |more

21. Next, delete a document from the collection you just created. The mkvdk utility handles deletes
somewhat differently than vspider. With vspider, you actually delete the document from the filesystem
and run an update. With mkvdk, you can simply mark the file as deleted, so that it will not be searchable,
leaving it on the file system. Move to the colls directory and use rcvdk to view your collection contents:

 cd c:\is97\colls

rcvdk mkcoll3

 s (to search all)
 r (to view results)

Notice the rev10.txt document. You must enter the file name exactly as it displays in rcvdk. This
means that if you had been deleting another document on the list, you might enter the file specification
differently (relative as opposed to absolute). The VdkVgwKey is determined by how you build the
collection or by the entries in a bulk submit or file list. In our example, we have entered some
documents using relative path and others using absolute. Delete the document from the collection with
the following command:

mkvdk -collection c:\is97\colls\mkcoll3 -delete c:\is97\docs\doc6\rev10.txt

After it’s been deleted, use rcvdk again to check the results. Keep in mind that deleting documents
requires servicing the collection and it may take a couple of moments to see the update. The first time
you had 5 documents in the collection, when you attach and search again, you should have only 4. When

__
 - 14 -

you view the results, you will see the document has been deleted from the collection, but when you go
to the directory, you will see the document still exists.

22. Finally, update a document from this same collection. The mkvdk utility also handles updates differently
than vspider. With vspider, when there are any changes: additions, deletions or modifications, these are
“sensed” when the collection is serviced. With mkvdk, it is a process of notifying the collection to do an
update to a particular document or list of documents.

cd c:\is97\docs\doc6

Edit the rev11.txt document. Add something to the name of the movie (& your name). Save and exit
the document. Note the difference in how the file specification is written.

cd c:\is97\colls
mkvdk -collection c:\is97\colls\mkcoll3 -update ..\docs\doc6\rev11.txt

When mkvdk is finished, use rcvdk to attach to your collection and search for whatever you added to the
document.

In these exercises you have had the opportunity to practice with the collection building and maintenance tools
provided by the two primary Verity indexers. The choices you make about which options and which style files to
use are based on the features you want to support in your collections.

If you have been working with Verity products for some time, you may have used other indexers and you may
already have collections built that you would like to add to your SEARCH’97 Enterprise Server. You do not need
to rebuild your existing collections, as long as they provide all the functionality and features, you desire. If you
want to take advantage of new features or the simplification provided by the universal filtering capabilities, you
will need to rebuild your collections.

__
 - 15 -

 EXPLORING STYLE FILES

This section provides details on style file creation, including:

• The Role of Style Files
• Defining Fields
• Creating the Virtual Document
• Filtering and Formatting by Zones
• Advanced Style File Features

The Role of Style Files

The primary role of style files is to provide you with an opportunity to customize your view of document
information. Organizational needs differ regarding the fields that are important and how the data for those fields
should be stored. Each style file allows the configuration of some important component in your collection and
you may choose a variety of different styles for groups of documents at your site. Each collection can be defined
with a unique style, but only one set of style files can be used.

Style files needed by the collection are described below. Some style files are mandatory for the collection to be
built, while others are optional and used only when needed for specific functionality.

The collection requires all style files be named the same. The root name is style, followed by the appropriate file
extension (.ddd, .dft). When you create a collection you specify which style files will be used. As the collection is
created this style directory is copied locally to the collection directory.

This process serves two purposes. First, by moving a copy of the style files used to build the collection into a
directory contained in the collection itself, you need not be concerned about losing or accidentally deleting
important style files. Second, including a copy of the style files helps to make collections portable. Collections are
designed to allow you to move them to another disk, another server, or even another directory, if needed.

EXPLORING STYLE GUIDELINES

You may not need to alter any style files. Verity tries to anticipate the kinds of information you will wish to
extract from documents and do the prep work for you. However, it is possible that your documents will have
special information, which could not be anticipated. When this is the case, you will need to edit style files to add
the information you want to extract.

Just to give you an idea about how the style files are defined, here are a few that are used in the main style
directory provided by Verity.

THE STYLE.DDD FILE CONFIGURES THE COLLECTION

$Id: style.ddd, v 1.1.1.5 1997/02/23 04:19:02 wade Exp $
Copyright (C) 1987-1997 Verity, Inc.
Document Dataset Descriptor
$control: 1
$include style.prm
$subst: 1
descriptor:
 /collection = yes

__
 - 16 -

{
 data-table: _df
 /num-records = 1
 /max-records = 1
 {
 # Header information for partition management
 worm: _DBVERSION text
 fixwidth: _DDDSTAMP 4 date
 varwidth: _DOCIDX _dv
 fixwidth: _PARTDESC 32 text
 constant: _FtrCfg text "${DOC-FEATURES:}"
 constant: _SumCfg text "${DOC-SUMMARIES:}"

 fixwidth: _SPARE1 16 text
 fixwidth: _SPARE2 4 signed-integer
 }
 # Required internal fields per document
 data-table: _df
 /offset=64
 {
 autoval: _STYLE sirepath
 fixwidth: _DOCID 4 unsigned-integer
 fixwidth: _SECURITY 4 unsigned-integer
 /minmax = yes
 fixwidth: _INDEX_DATE 4 date
 /minmax = yes
 }
$ifdef DOC-FEATURES
 # Optional feature vector per document
 data-table: _dg
 {
 varwidth: VDKFEATURES _dh
 /_implied_size
 }
$endif
$ifdef DOC-SUMMARIES
 # Optional generated summary per document
 data-table: _di
 {
 varwidth: VDKSUMMARY _dj
 /_implied_size
 }
$endif
$include style.sfl
$include style.ufl
}
$$

THE STYLE.DFT FILE DEFINES THE VIRTUAL DOCUMENT

HTML Version
$Id: style.dft, v 1.1.1.5 1997/04/17 00:04:43 ameyer Exp $
Copyright (C) 1987-1995 Verity, Inc.
Document Format

$control:1
dft:
{
 field: DOC
 # The following line invokes the HTML zone filter
 /filter="zone -html"
}
$$

__
 - 17 -

Auto-Filt Version
$Id: style.dft, v 1.1.1.1 1996/09/12 22:46:56 ameyer Exp $
Copyright (C) 1987-1995 Verity, Inc.
Document Format

$control:1
dft:
{
 field: DOC
 # The following line invokes MasterSoft WYSIWYG filtering
 /filter = "auto"
}
$$

PDF Version
$Id: style.dft,v 1.1.1.3 1997/02/28 19:14:57 wade Exp $
Copyright (C) 1987-1996 Verity, Inc.
Document Format

$control:1
dft:
{
 field: DOC
 /filter="flt_pdf -charmapto 850"
}
$$

THE STYLE.PRM FILE GOVERNS WORD INDEXING FEATURES

$Id: style.prm,v 1.1 1997/02/23 04:26:15 wade Exp $
Copyright (C) 1987-1995 Verity, Inc.

style.prm - collection schema parameters

This file is used to enable/disable index schema features through
macro definitions similar to those allowed by the C preprocesser.
This file is included in other style files using $include so
that the selected features are propagated to the schemas of all
tables in the index. Refer to the "Using the style.prm File"
chapter in the Collection Building Guide for more information.

The IDX-CONFIG parameter defines the storage format used to
encode the word positions in the index. WCT (Word Count) format
is a compact format, storing the ordinal counting position of the
word from the beginning of the document. PSW (Paragraph, Sentence,
Word) format takes approximately 15-20% more disk space, but
stores semantically accurate paragraph and sentence boundaries.
Optionally, Many may be specified with either WCT or PSW to
improve the accuracy of the <MANY> operator at the expense of
diskspace and search performance.

This example enables Word Count word position format (the default).
$define IDX-CONFIG "WCT"

This example turns on Paragraph/Sentence/Word word position format.
It also enables the <MANY> operator accuracy improvement.
#$define IDX-CONFIG "PSW Many"

__
 - 18 -

The IDXOPTS parameters define which index options are applied to
the various index token tables. The following index options are
supported for each: Stemdex enables an index by the stem of each
word. Casedex stores all case variants of a word separately, so
one can search for case sensitive terms such as "Jobs", "Apple",
and "NeXT" more easily. Soundex stores phonetic representations
of the word, using AT&T's standard soundex algorithm. The
application may also store 1-4 bytes of application-specific
data with each word instance, in the form of Location data and/or
Qualify Instance data. These options are specified separately
for each token table: word, zone, and zone attribute.
$define WORD-IDXOPTS "Stemdex Casedex"
$define ZONE-IDXOPTS ""
$define ATTR-IDXOPTS "Casedex"

Clustering is enabled by uncommenting the DOC-FEATURES line.
This stores a feature vector for each document in the
Documents table. These features are used for Clustering
results and fast Query-by-Example. See the discussions on
Clustering in the Collection Building Guide for more information.
$define DOC-FEATURES "TF"

Document Summarization is enabled by uncommenting one of
the DOC-SUMMARIES lines below. The summarization data is
stored in the documents table so that it might easily be
shown when displaying the results of a search.
See the discussions on Document Summarization in the
Collection Building Guide for more information.
The example below stores the best three sentences of
the document, but not more than 500 bytes.
$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 500"
The example below stores the first four sentences of
the document, but not more than 500 bytes.
$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 500"
The example below stores the first 150 bytes of
the document, with whitespace compressed.
$define DOC-SUMMARIES "LB MaxBytes 150"

THE STYLE.WLD GOVERNS HOW WORDS ARE STORED

$Id: style.wld,v 1.1.1.3 1997/04/02 23:26:47 wade Exp $
Copyright (C) 1987-1997 Verity, Inc. style.wld - Word List Descriptor

$control: 1
$include style.prm
$subst: 1
descriptor:
{
 data-table: _ph
 /num-records=1
 /max-records=1
 {
 # Header information for partition management
 worm: _DBVERSION text
 fixwidth: _DDDSTAMP 4 date
 fixwidth: _DIDSTAMP 4 date
 constant: Types text "Word Zone Attr"
 constant: Config text "$IDX-CONFIG"

__
 - 19 -

 constant: Word text "$WORD-IDXOPTS"
 constant: Zone text "$ZONE-IDXOPTS"
 constant: Attr text "$ATTR-IDXOPTS"
 constant: TSPARE1 text ""
 constant: TSPARE2 text ""
 constant: TSPARE3 text ""
 }
This is the table of parts covered by spanning wordlist
 data-table: _pp
 {
 fixwidth: PARTNUM 4 unsigned-integer
 }
 # The Actual full text index data
 data-table: _pf
 {
 varwidth: FWTEXT _pw
 /_implied_size
 varwidth: FWDATA _pv
 /_implied_size
 fixwidth: FWENCODE 1 unsigned-integer
 fixwidth: FWFREQ 2 unsigned-integer
 }
The Btree for fast word lookup
 data-table: _pb
 {
 fixwidth: FWBTREE 3 text
 }
The accelerator for lookup by Stem
 data-table: _ps
 {
 fixwidth: STEMDEX 4 unsigned-integer
 }
The accelerator for lookup by Soundex
 data-table: _px
 {
 fixwidth: SOUNDEX 4 unsigned-integer
 }
}
$$

THE STYLE.SFL FILE GOVERNS STANDARD FIELD DEFINITION

$Id: style.sfl,v 1.4 1997/04/19 01:47:13 bjohnson Exp $
Copyright (C) 1997 Verity, Inc.

style.sfl - Verity-Defined Standard Fields

These fields are included in the internal documents table.
They are filled in by various filters and gateways that Verity ships,
and are the "standard fields" that Verity suggests should exist in all
Verity collections. They are not required in your collection. Instead,
they are merely highly recommended to promote the ability to use your
collection with other products that use Verity's search technology.
You can comment out the fields below to save space, or uncomment others
to gain functionality.

Note that "flt_inso" refers to the "auto" filter that can use either
the Mastersoft or Inso OutsideIn filters.

data-table: _sf
{

__
 - 20 -

 # Title is filled in by: zone -html, flt_pdf, zone -email, zone -news
 varwidth: Title _sv
 /alias = FTS_Title
 /alias = Subject

 # Author is filled in by: flt_pdf, zone -email, zone -news, flt_inso
 varwidth: Author _sv
 /alias = From
 /alias = FTS_Author
 /alias = Source

 # Keywords is filled in by: flt_pdf, zone -news, flt_inso
 varwidth: Keywords _sv
 /alias = FTS_Keywords
 /alias = Keyword
 /alias = Comments
 /alias = Reference

 # Snippet is filled in by: vgw_url, flt_inso
 varwidth: Snippet _sv
 /alias = Abstract

 # MIME-Type is filled in by: universal
 varwidth: MIME-Type _sv

 # Charset is filled in by: flt_cmap
 varwidth: Charset _sv

 # To is filled in by: zone -email, flt_inso
 varwidth: To _sv
 /alias = Destination

 # Date is filled in by: zone -email, zone -news, flt_inso, flt_pdf
 #
 # This field is the "last modified" date, not the creation date
 fixwidth: Date 4 date
 /alias = Modified
 /alias = FTS_ModificationDate
 /alias = Recorded_Date
 /alias = Version_Date

 # NewsGroups is filled in by: zone -news
 varwidth: NewsGroups _sv

 # PageMap is filled in by: flt_pdf
 # This field is required to do highlighting in pdf documents. Do not
 # comment this if you want pdf highlighting!
 varwidth: PageMap _sv
 /_hexdata = yes

 # The following are fields that could be filled in by Verity shipped
 # code, but they are currently not populated by many documents. To
 # save space, they are commented out here. You may comment them back
 # in before indexing your documents if you need them in your collection.
 #
 # The following fields are filled in by "zone -news"
 #varwidth: References _sv

 # The following fields are filled in by flt_inso
 #varwidth: Last_Author _sv
 #varwidth: Account _sv
 #varwidth: Address _sv
 #varwidth: Attachments _sv

__
 - 21 -

 #varwidth: Authorization _sv
 #varwidth: Backup_Date _sv
 #varwidth: Bill_To _sv
 #varwidth: BCC _sv
 #varwidth: CC _sv
 #varwidth: Category _sv
 #varwidth: Checked_By _sv
 #varwidth: Client _sv
 #varwidth: Completed_Date _sv
 #varwidth: Character_Count _sv
 #varwidth: Page_Count _sv
 #varwidth: Word_Count _sv
 #varwidth: Created _sv
 #varwidth: Department _sv
 #varwidth: Destination _sv
 #varwidth: Disposition _sv
 #varwidth: Division _sv
 #varwidth: Minutes_Edited _sv
 #varwidth: Editor _sv
 #varwidth: Forward_To _sv
 #varwidth: Group _sv
 #varwidth: Language _sv
 #varwidth: Last_Print_Date _sv
 #varwidth: Mail_Stop _sv
 #varwidth: Matter _sv
 #varwidth: Office _sv
 #varwidth: Operator _sv
 #varwidth: Owner _sv
 #varwidth: Project _sv
 #varwidth: Publisher _sv
 #varwidth: Purpose _sv
 #varwidth: Recorded_By _sv
 #varwidth: Recorded_Date _sv
 #varwidth: Modified _sv
 #varwidth: Revision_Notes _sv
 #varwidth: Revision_Number _sv
 #varwidth: Secondary_Author _sv
 #varwidth: Section _sv
 #varwidth: Security _sv
 #varwidth: Source _sv
 #varwidth: Status _sv
 #varwidth: Document_Type _sv
 #varwidth: Typist _sv
 #varwidth: Version_Date _sv
 #varwidth: Version_Notes _sv
 #varwidth: Version_Number _sv

 # The following fields are filled in by flt_pdf
 #varwidth: FileName _sv
 #fixwidth: NumPages 4 unsigned-integer
 #fixwidth: PermanentID 32 text
 #fixwidth: InstanceID 32 text
 #varwidth: DirID _sv
 #fixwidth: WXEVersion 1 unsigned-integer
 #varwidth: FTS_Creator _sv
 #varwidth: FTS_Subject _sv
 #varwidth: FTS_Producer _sv
 #fixwidth: FTS_CreationDate 4 date

 # The following fields are filled in by vgw_url
 #varwidth: Ext _sv
 #varwidth: URL _sv
 #varwidth: _Created _sv

__
 - 22 -

 #varwidth: _Modified _sv
 #fixwidth: Created 4 date
 #fixwidth: Modified 4 date
 #fixwidth: Size 4 unsigned-integer
}

THE STYLE.UFL FILE GOVERNS USER DEFINED FIELDS

$Id: style.ufl,v 1.1 1997/02/23 04:26:39 wade Exp $
Copyright (C) 1987-1997 Verity, Inc.
style.ufl - Application-specific User Fields

 data-table: dkf
 {
 # Must have a VdkVgwKey - this is the primary key to the document
 # The field type can be changed to fixwidth integer or text as needed
 varwidth: VdkVgwKey dkv
 /indexed = yes
 /minmax = yes
 }
 data-table: ddu
 {
 varwidth: Workgroup ddh
 varwidth: Product ddh
 }

FIELD DEFINITIONS STYLE.DDD

The style.ddd file defines the fields that you want to create for the collection. All field names and values are
stored in the Document Dataset. You can create additional fields with a constant value for your virtual
documents. These constant fields are those that appear in each virtual document and have the same field value
for each document. The constant field values are added to the Document Dataset when you build the collection,
based on instructions you place in the style.ddd file.

The collection captures information about the documents that it contains. For each document, the document
database stores key information such as its title, author, and date. Additionally, the database stores information
about the location and size of the document, since collections do not physically store documents within the
database architecture. You decide which fields you want to create and then take advantage of the fields as
desired. Defining helpful fields such as title and author makes your information application much easier to use. It
is important to understand that all documents do not have to contain all of the fields you define. Documents
without some fields will simply not be scanned when performing field searches.

There are three basic types of fields that can be defined in a style.ddd file. These statements are stored in special
data-tables to improve performance. Data-table names should be three characters in length. Field types that you
may include are:

Static Value Fields (constant, autoval, worm):

Constant value fields assume the same for the entire collection. They can be up to 128 characters in length. If the
constant value includes white space, you must enclose it in quotes. The format is to list the field name, the data-
type, and the value:

 constant: DBDOC text "Lessons Learned"

__
 - 23 -

This statement says to create a new field called DBDOC for the collection and to populate the field with the text
string "Lessons Learned. This data is only stored once.

Variable Fields (fixwidth, varwidth):

Variable fields are populated with variable values parsed from the original document text according to Verity’s
formatting and filtering rules for automatic extraction of zones and fields or for rules in a style.tde file. Variable
fields can have modifiers that create a separate index for fields within the Document Dataset or limit field
searches to those that are case-sensitive.

 fixwidth: DATE 4 date

 varwidth: TITLE dd1
 /indexed = yes or no
 /case-sensitive = yes or no

Index options increase performance during the field level searches. Create these indexes only for the fields that
will be regularly searched.

If field-level searches are to be conducted over a field containing a date, the date field must be defined as a fixed-
width field and assigned a data type of date. You will always use a length of 4 for date fields because they are
translated by an internal program into a special Verity date format. This special date format allows documents to
represent dates in a variety of ways and still be searched or sorted appropriately. It also allows users to enter
dates in a variety of ways and find their information regardless of the format that exists in the document.

Document Dispatch Field:

The dispatch field statement identifies a special field that is used when a user wishes to display a document. In
most cases you will define the field DOC to display the entire document on screen. If you wish to display only
part of the document, you may indicate the start-of-document address pointer (to any point where you wish to
begin displaying text in the document window) in your style.dft file.

 dispatch: DOC (or field name)

CONFIGURING THE VIRTUAL DOCUMENT: STYLE.DFT

The style.dft file contains the rules for displaying for the virtual document. The default virtual document consists
of one field called doc (which is your entire document). This document appears beginning in row 1 and column 1
of the document window.

The virtual document identifies document filters and formatting used for indexing and displaying documents.
These default settings are enabled:

• The Universal Filter which automatically detects all supported document types using the helper filters
• The WYSIWYG Filter which supports searching over binary documents and which are incorporated

in the KeyView Filter Kit
• The Zone Filter which supports searching over regions of text defined as zones
• The PDF Filter which supports searching of Adobe Acrobat PDF documents
• A generic document layout definition which indicates the body text to be indexed and viewed

__
 - 24 -

A style.dft file allows you to change the appearance and contents of the virtual document. You can change
margins and spacing of fields, select field values, add standard or repetitive information, or incorporate text
contained in a separate file.

The dft Statement

The dft statement identifies the file as a style.dft file. This statement specifies how data is to be dispatched to the
screen when a user chooses to view the document.

The dft statement may have three modifiers:

/fill create a newline if a newline character is encountered in a
field value or constant(default = no preserves new lines in
the document)

/right-margin defines right-margin for document display (default = 70)
/tabsize defines number of indent characters to be used when a tab is

encountered (default = 8)

Miscellaneous style.dft Statements

Keyword statements under the dft statement include:

field name of field defined in style.ddd that you wish to display in
each document window

constant string of text that you want displayed in each document window
file full or relative path to a document that you want displayed in

each document window
system specifies a system call that is to be done before Topic

displays information in the document window. The result of the
system call can be a part of the display.

Each of these statements may have the following modifiers. Note that some of these modifiers are the same as
those used above in the dft statement. Modifiers for the dft statement are global variables for all keyword
elements.

/fill create a newline if a newline character is encountered in a
field value or constant (default = no preserves new lines in
the document)

/right-margin defines right-margin for document display (default = 70)
/tabsize defines number of indent characters to be used when a tab is

encountered (default = 8)
/filter specifies the I/O filter_name that will convert the native

format of documents
/charmap defines the character map to be used to print characters to

the screen when a foreign language is being used. There are
two choices: 850 (IBM code page 850) or 8859 (ISO-8859)

/row specifies the row number in which the field value or string
will be displayed

/col specifies the column number in which the first character of
the field value or string will be displayed

/delta-row specifies the row number relative to the text above it where
you want the field value or string to be displayed

__
 - 25 -

/delta-col specifies the column number relative to the right-most
character in a row where you want the first character of a
field value or string to be displayed

A Basic style.dft File

$control: 1
dft:
 /right-margin = 60
{
 constant: "Gardening Journal"
 /row = 2
 field: TITLE
 /row = 4
 /col = 10
 field: DOC
 /delta-row = 2
}
$$

The document window, using this style.dft would look like this:

Gardening Journal

 Planting Onions in Winter

I have had a lot of experience planting sweet onions.
Though onions are thought to be a seasonal crop, I've been
experimenting with greenhouse onions. To my great surprise,
the onions I planted this winter were the best ever.

DEFINING ZONES

Zone searching allows you to define regions in a document where restricted searching can be applied. For
example, your documents may contain an abstract field or a subject keywords field. Finding your search term in
one of these regions might prove your subject better than finding it anywhere in the general text of the
document. Zone searching also produces faster results than traditional field searching. One caution is that zones
cannot do range searching, so dates defined as zones would not typically make sense. Another caution is that the
traditional field operators cannot be used either. Queries against zones use the operator <IN>. For example,
John <in> publisher. You can define a region of text as both a field and a zone. This allows differing types
of searching to be effective based on the user’s requirements. It can, however present some new training issues
to make sure your users understand how they should query.

The key difference in zone searching is how and when parsed information is processed. In the traditional model,
indexing handles up front parsing and the creation of a bulk-insert (header) file for processing. Even if you still
follow this model, the values may be changed when you use zones. The reason for this is that zones are
populated at indexing time based on definitions in your dft.

Zones also require well formatted documents and were designed primarily for HTML and SGML documents, and
with a bit of creativity, even ASCII documents, can use features in the style.dft to create custom zones.

__
 - 26 -

INDEXING WITH ZONES

There are three built-in zone modes and you must specify one with the zone argument

• -html filters hypertext markup language
• -email filters Internet email conforming to RFC822 standard
• -news filters Internet Usenet news conforming to RFC822

By default the SEARCH’97 engine invokes the universal filter with the zone filter as a helper or you can specify
the zone filter in a style.dft file. If you place a filter spec in the style.dft, the collection must be limited to those
type of documents.

When the zone filter encounters a start tag, it opens a new zone and closes it when it encounters an end tag.
The indexer then makes a zone out of all the text between the two tags. The tags themselves are ignored and
tag names are case-insensitive.

The zone filter recognizes most standard tags through HTML 3.0 It automatically extracts these tags as fields and
ignores the rest

 <a> <code> <head>
 <abbrev> <dfn> <html>
 <acronym> <fn> <lang>
 <address> <form> <link>
 <au> <h1> <note>
 <banner> <h2> <person>
 <base> <h3> <q>
 <blockquote> <h4> <samp>
 <body> <h5> <textarea>
 <cite> <h6>

__
 - 27 -

LAB 2: EXPLORING STYLE FILES

1. Under the IS97 directory you will find a main styles directory which contains a number of style

subdirectories. The most important style directory to review is the one called style. This is the one that
takes the most advantage of SEARCH’97 features. Move to this directory and review the following key
features in each of the
style files.

 a. Edit the style.ddd
 b. Note the comments at the top of the file about not adding user fields to this file. Beginning

with SEARCH’97, the style.ddd file (which used to hold all information about fields in the
collection) has a new structure. The idea is to use the .ddd as a gatherer of other style
information - which includes
the style.sfl - for all the fields that Verity has learned are important to customers, and your
style.ufl –where you add any other fields you want to include.

 c. A few lines down you will find the style.prm. This style file governs how you prefer to store
word index information. Notice that it is called with the $include statement.

 d. As you read through this file, you will find many fields being created by Verity, which are
required to make the collections work properly. You should also notice the structure of this
file. Organized in data-tables, you will find almost every type of field in this file. These are
some of the fields you see when you “browse” a collection.

 e. At the end of the file, you will see that there is another $include to the style.sfl (Verity’s
standard field list) and to the style.ufl. Do you remember what the style.ufl is for?

 f. Close the .ddd and open the style.sfl. This style contains all of the standard fields that will be
captured by Verity’s filters and gateways. This is a well documented file, so

 take a few minutes to its contents and structure. Note too that there are many
 additional fields you could use, by simply uncommenting them.
 g. Close the .sfl and open the style.ufl. What is contained here?
 h. The top of the style.ufl provides some quick training on how to add your own user
 fields.
 i. Close the .ufl and open the style.dft. As you can see, this .dft is calling the universal
 filter. What does the .dft configure?
 j. Close the style.dft and open the style.uni. What is contained in this style file? Review
 the various components and comments and note the different ways applications
 are covered based on mime-type.

2. Open a second Command Prompt Window so you can view other style files, side by
 side. Return to the main style directory and wind your way through the various
 directories. Notice that they have different contents, different numbers of style files
 and many examples. Watch for some that have unique files like style.lex, style.zon, and
 style.tde. After this lab, we will explore some of these unique style files and learn
 about customization alternatives for collections.

__
 - 28 -

CONFIGURING THE WORD INDEX

Three additional style files allow you to refine your word searching. The use of any one of these style files affects
the contents of the collection’s document index. If you use a style.lex file, your document index will grow to
accommodate all words that include any of the special characters you have specified. If you use a style.stp to stop
words from appearing on your word index, the document index will be smaller. Rarely does anyone use the
style.go file, which limits your index to only those words contained in the file.

THE STYLE.LEX FILE

When you wish to include non-alphanumeric characters such as ampersands or slashes as part of your words, you
will need to specify these characters in a lex file. When you include a lex file in the style sub-directory, the indexer
will use your lex definition in place of its own internal lexical analyzer. It will take a little longer for the build when
using your own lex file because it is not integrated into the program. As document indexing runs, you will see
messages telling you that the indexer is reading the document lexer, compiling, and writing the new document
lexer for the collection you are creating. If you use this same set of style files to create another collection, the
compiled style.lxt version will be used.

Since the indexer will use your lex file in place of its own, you must define all the key components in any lex file
you create.

SAMPLE STYLE.LEX FILE

style.lex

$control: 1
lex:
{
 define: WHT "[\t]"
 define: NL "{WHT}*\n"
 token: WORD "[A-Za-z0-9]+" # word
 token: WORD "[0-9]+\\.[0-9]+" # word
 token: EOS "[.?!]" # end of sentence
 token: NEWLINE "{NL}" # single end-of-line
 token: PARA "^([\t]*\n)+" # end of paragraph
 token: WHITE "{WHT}" # whitespace
 token: PUNCT "." # all other text
}
$$

THE STYLE.STP FILE

You can exclude frequently used words from your word index by adding a style.stp file to the style directory
before building your collection. A style.stp file is a regular ASCII file where you list the words you do not want to
include in your document index. This file is case-sensitive, so if you want all variations of words, you will need to
list them individually or define them by regular expression. Be sure to inform your users about words you have
excluded. Remember that Verity products search for matches against the index. If a user queries on “the white
house” and the word “the” has been excluded, no results will be returned. This can be very confusing for end
users and for this reason, we generally recommend against the stopping of words.

__
 - 29 -

Viewing Words in the Index

You can use the didump utility to see words stopped in a collection. The didump utility includes information
about the occurrences of words in a single partition. Output can be viewed on the screen or redirected to a file.

If words have been auto-stopped, you may find a value of 0 in the first four columns of the index. If you are
concerned that a particular word might occur frequently and wish to check the status, you can use the didump
utility and specify the word.

For instance, from the coll_a collection, you could use the didump to see the occurrences of the word “the” in
the word indexes, which are stored under the parts directory.

didump -pattern the 00000000.did

 Word Size Doc Word
 THE 8 1 1
 The 98 5 27
 the 605 6 195

THE STYLE.GO FILE

The style.go file is also an ASCII file that lists words, one word per line, which will be the only words to be
indexed. As this runs counter to the whole idea of text retrieval, it is rarely used. Format of the style.go file is
exactly the same as the style.stp file.

WHAT IS A “POLICY FILE”?

To understand what a policy file is, and why it would be needed, we must first take a few steps backward and
look at the bigger picture. Verity applications are products that are built on Verity’s SEARCH’97 Developers Kit
Engine. This engine is advanced and flexible.. One of the benefits of the engine is that it handles most of the work
handed to it in real-time, which means that as soon as the engine is done processing its work, the users are able
to see the results of that work.

In order to build a system that allows for users to be reading while the engine is writing, a controlling component
had to be put in place to deal with “traffic” and make sure that all work requests (reading and writing) were taken
care of. This “traffic manager” component is referred to as the service loop. The service loop has many different
tasks it must execute. These tasks and their associated rules, are controlled through the policy file. Default values
for each of these parts are built into Verity products, but through the use of a policy file, you can override these
default values. Section 5 of the Collection Building Guide addresses the features and settings of the policy file.

__
 - 30 -

ADDITIONAL MATERIALS SECTION

• CLIENT SERVER APPLICATION: ENTERPRISE SERVER/TOPIC AGENTS
• REGULAR EXPRESSIONS
• STYLE.TDE FILE

__
 - 31 -

THE ENTERPRISE SERVER

The SEARCH’97 Enterprise Server offers access to collections, knowledgebases, and search technology in a
client/server application. There are two types of connections that can be made from client products, Local and
Remote. A local connection means reading and searching information in collections and knowledge bases that are
visible to the machine running the client via some kind of drive letter or path. This does not (as it’s name implies)
mean that the information must actually live locally, just that it can be seen via a path. For instance: a collection
may be placed in C:\DEMOS, which is on the machine’s local hard drive, or it could be placed in
R:\COMMON\DATA, which is a directory on a LAN server.

Remote connections, on the other hand, do not require that the machine be able to see the collection via any
kind of path. With a remote connection, client products use IP (Internet Protocol) to connect with an external
computer where an Enterprise Server has been installed and configured. Once this work has been done, users
can submit their search requests to the server and receive their results from the server.

To make a remote connection, the server must be set up and listening to a port for search requests. The server
is basically a daemon that is run from a UNIX or Windows NT command line prompt. A configuration file for the
server is created and modified to suit the needs of the clients it will serve. This config file includes information
about which collections and knowledge bases to serve, what port to listen to requests for, how many users are
allowed to connect, etc..

Multiple servers with different sets of collections and knowledgebases can be set up to watch different “ports,”
serving selected information in different configurations. For example, server daemon “A” could be set to serve a
NewsWatch on port 8005 while server daemon “B” is giving out sports scores on port 8006. These are two
different instances of the same program, run with two different configuration files. This kind of set up provides
great flexibility in specifying what, where, and how your information will be served.

Before you start your server, you should have created collections and topicsets that will be provided through the
server port. Once your Enterprise Server is installed, you will find sample configuration files for every platform in
the admin subdirectory. The first thing you need to do is to edit the appropriate configuration file for your
platform. At a minimum you will need to set your server spec (tcp:5000) and make sure your startup collection
and startup knowledgebase are properly pathed.

STARTING THE SERVER

You can start the server from a command line or from an icon. The SEARCH’97 Enterprise Server for NT
includes a graphical Verity Service Administrator that allows you to start and stop your server, make changes to
the configuration file, and monitor activities.

__
 - 32 -

STARTING THE CLIENT

You can connect to the Enterprise Server via Topic Agents. In either case you will make a remote connection,
supplying the port information for your server. Topic Agents allow you to create an agent that captures user
preferences for the remote connection.

THE IMPORTANT ROLE OF MAP FILES

Two important components in the configuration of clients are the specifications for which collections are to be
used and which topic sets (knowledgebases) will be used. Both of these are configured in a special map file
which describes how users will see the appropriate components and which will be included. When the user logs
into the client through the server, these map files direct the user’s access to information.

THE COLLECTION MAP FILE

A collection map file is used to describe the collections you will make available to your users. It includes the
order and relationship in which collections appear, as well as the path to the physical collection. You can use
virtual names for the collections, which are then mapped, to their physical locations. A collection list map can
“call” other collection list map files – as long as the total number of collections does not exceed 128.

Sample Collection Map (.clm) File

 $control: 1
 virtual-collection: “Corporate NewsWatch”
 {
 node: “Live Feeds”
 /collection-path = c:\is97\colls\newsfeeds

 node: “World NewsWatch”
 {
 node: “European Community”
 /collection-path = c:\is97\colls/ec

 node: “General News”
 /collection-path = c:/verity/colls/misc
 }
 }

Using the collection map shown above, a Topic Agents user would see the following structure when they click on
the Collections tab and expand the collections:

__
 - 33 -

Users can then select at any node level to enable documents for searching. The DBA should, therefore, focus on
which collections are logically going to be desirable to search as a group and which are more likely to be
standalone. By defining them hierarchically in this file, users can select the top level node with one click, turning
on all collections, which reside below.

Ideally, your collection map files will be in a central location so that you have only one file to manage when adding
new collections for your users.

A knowledgebase map file is used to describe the topic sets you will make available to your users. It includes the
order and name you wish to display, as well as the path to the physical topic set. You can use virtual names for
the topic sets, which are then mapped, to their physical locations.

Sample Knowledgebase Map (.kbm) File

 $control: 1
 kbases: “Corporate NewsWatch”
 {
 kb: “Personal Topics”
 /kb-path = /users/joe/personal.skb note:
 kb: “Corporate_Information” no spaces
 /kb-path = toplib/corp in names
 kb: “Industry_and_Technology”
 /kb-path = toplib/int
 kb: “Current_Events”
 /kb-path = toplib/news
 }

Using the knowledgebase map shown above, a Topic Agents user would see the following structure when they
click on the Topics tab and select their knowledgebase:

The icon above indicates that most of the topic sets cannot be written to. The Personal_Topics knowledgebase
is the only one that can be updated. Note that the order shown is the exact opposite of the way the file is
defined. Each knowledgebase can hold approximately 20,000 topic nodes (top-level and sub-topics count) and
you can have up to 127 knowledgebases at your site. Queries can cross-reference these topics, but by default
only the topics in the current selection will be used.

CONFIGURING THE SERVER

You will create a server configuration file that specifies server processing options, client processing options, and
an optional security driver. Many other features can be implemented through the server as described in the
following sample configuration file.

__
 - 34 -

There is a significant performance hit if you enable the audit drivers so you may want to use this feature
sporadically. Load balancing options are only available on UNIX versions of the Enterprise Server.
Example of the topicsvr.cfg File

topicsvr.cfg

Configuration file for SEARCH’97 Enterprise Server

$control: 1
#---
The server section is used to control attributes and access features of TOPICSVR, as
well as most search-specific features as well.

server:
#---
serverHome is used to tell the server what the working (current) directory is.
Regardless
of what directory the TOPICSVR program resides in, or where it was run from, this
directory
will be the starting location for where all collections, topic sets, and other
transactions
will be looked for. The Verity default for serverHome is the directory where the server
was
run from.

#/serverHome = .
#---

maxUsers is used to limit the number of concurrent users who can access this instance
of
TOPICSVR at one time. The Verity default for maxUsers is 16

/maxUsers = 16
#---
maxProcess controls the number of processes that this instance of TOPICSVR is allowed
to
start up. The more processes TOPICSVR can start, the better the performance, however
more
system resources will be consumed. The Verity default for maxProcess is 1

/maxProcess = 1
#---
minProcess controls the minimum number of processes that this instance of TOPICSVR is
allowed to start up. The less processes TOPICSVR has started, the better the
performance,
and more system resources will be available. The Verity default for minProcess is 0

/minProcess = 1
#---
overflowPercent sets the server load threshold where a new process will be started to
help
the server service requests. The starting of a new process due to overflow requires
that
the maxProcess limit has not already been reached. If it has been, no new process will
be
started. For example, if maxProcess is set to 5 and there are currently two processes
running, and another user logs in and runs a long search, TOPICSVR will start up
another
process to service that third user. As the third user logs off, TOPICSVR will shut down
that additional unused process. The Verity default for overflowPercent is 0

__
 - 35 -

/overflowPercent = 0
#---
serverSpec controls the access method and port number that TOPICSVR uses to listen to
connections from various clients. The serverSpec consists of a number of values
separated
by colons. The Enterprise Server Guide explains in detail about the various connection
protocols and values associated with them.

The Verity default for serverSpec is ONC:0x30909091:5, meaning TOPICSVR will attempt to
talk to the server's portmapper to obtain port number 814,780,561 and will wait 5
seconds
for a reply from the portmapper. We use TCP in our center and the example shown below
is
requesting port 5000 for the server.

/serverSpec = tcp:5000
#---
background determines whether or not to start the server as a background process. This
is
similar to using an & on the UNIX command line when running TOPICSVR. The Verity
default
for background is NO

/background = NO
#---
messageOfTheDay is a simple text string that is sent to each client that logs into
TOPICSVR. Where the message is displayed depends on the client that is connecting to
the server. In the case of TOPIC AGENTS, the message appears in the message window
which may or may not be open. Keep in mind that sending this message from the server
will not cause the client software to open the message window, just to display it.
This
message has no impact on the operation of the server or the client, but can be used to
convey useful or helpful messages to the clients as they connect. # The Verity default
for
messageOfTheDay is ""

/messageOfTheDay = "Welcome to Our Sports Server"
#---
maxDocs controls the maximum number of documents returned on the clients result list.
The
purpose of setting maxDocs is two-fold. First of all, it keeps users from getting
overwhelmed when a search is run that would normally return hundreds of thousands of
documents that match the search criteria. Second, it prevents the system from using up
valuable system resources gathering results information on documents the user will
probably never use. The Verity default for maxDocs is 500

#/maxDocs = 500
{
#---
The session section is used to control session attributes and general server operation.

session_options:
#---
dataPath is used as an internal extension to the system's environment path. Instead of
making additions directly to the system environment path, this line can be included to
do
that. The artificial path extensions effect only TOPICSVR, and remain in effect until
TOPICSVR is shut down. When searching for files to open, TOPICSVR searches the data
path
in the following order: first, TOPICSVR will look in the serverHome directory, then
along
the environment path, then along the dataPath.

__
 - 36 -

To reference multiple directories in the dataPath, you must put a ":" between each path
entry, for example: /dataPath = "data/demo:data/files:docs/files"

If you are using an Adobe Acrobat collection, it is critical that the .pdf files can be
found somewhere along the data path. The Verity default for dataPath is ""

#/dataPath = c:\verity\s97ent\demos\data
#---
startupCollection is used to point to the collection(s) that are to be opened and made
available to the clients for searching when TOPICSVR is started. startupCollection can
point to a single collection or a group of collections referenced in a collection map
file
(.clm). If you are pointing TOPICSVR at a single collection, you would set
startupCollection to that collection's path: startupCollection = colls/news9610

/startupCollection = c:\verity\s97ent\demos\colls.clm
#---
vdkHome is used to point TOPICSVR to a directory named "common" which contains many
important files that TOPICSVR needs in order To run. If TOPICSVR cannot find this
directory, or does not have the permissions to read into that directory, it will be
unable
to run, and the console will receive a message about not being able to open the message
database. The "common" directory is copied to the system when the TOPICSVR installation
program is run, and can be found under the product was installed into. If the
common directory is moved for any reason, or can no longer be found along the system
environment path, this value will need to be updated. The Verity default for vdkHome is
""

/vdkHome = common
#---
topicSet is used to reference a set of topics that is to be opened when the server is
started and made available to the clients for search purposes. The discussion of what
topics are is outside the scope of the text of this configuration file.

The topicSet parameter is currently available, but will be eventually phased out, and
emphasis will be put on using the startupKB parameter instead. Currently, topicSet and
startupKB perform some of the same functions. The Verity default for topicSet is ""

/topicSet = c:\is97\topics\news
#---
startupKB functions much like startupCollection and can be used to reference a single
topic set, or a group of topic sets referenced by a map file. This is the primary
advantage over the topicSet parameter, which can only open one topicSet per instance of
TOPICSVR. Like startupCollection, to open a single topic set, you need to reference the
location of the topic set, for example: /startupKB = kbases/finance

To open a group of topic sets defined in a knowledgebase map file, point startupKB to
the
map file: /startupKB = c:\verity\s97ent\demos\kbases.kbm. The Verity default for
startupKB
is ""

/startupKB = c:\verity\s97ent\demos\kbases.kbm
#---
maxFiles controls the number of file pointers (handles) the client session can use. The
default value for this member depends on the operating system TOPICSVR is run from.
Depending on what the client is doing, when the maxFiles setting is reached, several
different things can happen. In most cases, the reaching of the maxFiles limit will
generate a message and probably stop whatever operation the server was performing for
the client, for example stopping a search, stop returning new or additional search
result

__
 - 37 -

information, etc. If the setting is reached, a message will be visible from within
Topic
Agents from within the Message Window, which may or may not be open.
#/maxFiles =
#---
maxPages determines the number of 1K blocks of memory that the instance of TOPICSVR
will
attempt to allocate itself when it is started up. This is the setting for the internal
disk cache, and it is this cache area where information such as user search results,
search requests, search and collection statuses are stored, even if only temporarily.
The
larger this cache, the better TOPICSVR's performance will be, however this will be
using up more of the host system's memory resources. This value can be set as low as 0,
but the performance will be terrible. Typically, settings for this value will be
between
128 and 512. The Verity default for maxPages is 128
/maxPages = 128
#---
threaded controls if TOPICSVR will be running as a multi-threaded server or a single-
threaded (basically the same as a normal, non-threaded application) server. The
advantage
of running TOPICSVR in threaded mode is performance. By running TOPICSVR threaded,
you
are basically allowing it to perform several different tasks concurrently, scheduling
different mini tasks as time permits. The best advice is to start running your server
in
non-threaded mode for a while to make sure it is working as you would expect it to,
then
switch to threaded mode and run for a few days and see if any clients complain of
lockouts
or other unexpected behavior. Fortunately, switching between multi- and single-
threaded
mode is as simple as changing this parameter. The Verity default for threaded is YES
/threaded = yes
#---
accessQuestion is used to help narrow down the set of documents that are actually
searchable from this server. For instance, you can set up several servers, each of
which
point to the same set of 10 collections, but you want to limit one server to be able
to
search only documents that contain the word "computer". You would set up an access
question that would look like: /accessQuestion = "computer". From that point, any
client
that connected to that TOPICSVR would only be able to search across documents that
contained the word computer, even though the 10 collections contain many other
documents
that do not contain that word. Keep in mind that this setting does not affect any
other
instances of TOPICSVR that are running against this set of collections. The Verity
default for accessQuestion is ""
#/accessQuestion = ""
#--
The drivers section is used to access various external components and make them
available
to TOPICSVR. In all cases, TOPICSVR does not require that *ANY* drivers be loaded in
order
to function, but if the various drivers are not loaded, TOPICSVR will be unable to
otherwise perform the function(s) associated with each driver. Similarly, not all
drivers
need to be loaded each time in order for TOPICSVR to run. The various drivers are not
mutually inclusive or exclusive of each other.
drivers:
{

__
 - 38 -

#---
The audit drivers allow TOPICSVR to document various aspects of its operation, from
who
logged on, to what searches were run, how long those searches took, and what results
were returned just to name a few. The audit trail is in the form of a log file that
is
saved to the hard disk, as well as a series of messages that will appear on the
console
that TOPICSVR was run from. The audit driver is installed in two pieces. The first
piece, the LINK setting, tells TOPICSVR the name of the log file as well as the types
of message to write to that file (-e -f). The second line actually lodes the audit
driver code into memory and registers it with TOPICSVR so it can perform the auditing
functions. Both the first and second line will vary from hardware platform to hardware
platform. TOPICSVR does not require an audit driver to be loaded in order to
function, but without the loading of the audit driver, it will not be able to generate
the audit trail log. The Verity default for audit is: None audit: "LINK:0:SystemLog
-e -f nti31.log" audit: DLL:_nti31/dll/samp_log.dll:audit

The compression driver is used to reduce the amount of information that is actually
sent
over the network between the client and the server. This does not actually reduce the
level of information sent back and forth, but rather stores it in a smaller, compressed
form that can then be de-compressed. The actual syntax for loading the compression
driver
will vary from hardware platform to hardware platform. TOPICSVR does not require a
compression driver to be loaded in order to function, but without the loading of the
compression driver, it will not be able to send or receive compressed information. The
Verity default for compress is: None
compress: DLL:_nti31\dll\drvr_rle.so:compress
/name = rle
#---
The encryption driver is used to protect the transmissions to and from the server. This
driver scrambles the data sent to a server from a client, then the server will
unscramble
it. This is useful when the content of the queries or the content of the results are of
a
sensitive or secret nature. The security this driver provides is not C2-class security,
but will keep its contents secure from the more casual browsers. The actual syntax for
loading the encryption driver will vary from hardware platform to hardware platform.
TOPICSVR does not require an encryption driver to be loaded in order to function, but
without the loading of the encryption driver, it will not be able to send or receive
scrambled information. The Verity default for encryption is: None
encrypt: DLL:_nti31\dll\drvr_xor.dll:encrypt
 /name = xor
#---
The security driver is used to prevent unauthorized access of TOPICSVR. Basically, this
driver implements a name/password security mechanism that forces each potential user of
TOPICSVR to provide a user name and password before TOPICSVR will allow that client to
perform any searches. The actual syntax for loading the security driver will vary from
hardware platform to hardware platform. TOPICSVR does not require a security driver to
be
loaded in order to function, but without the loading of the security driver, it will
not
require a user name or password to be able to connect to TOPICSVR. The Verity default
for
security is: None
security: "LINK:0:VerityPassword"
}

}
$$

__
 - 39 -

STARTING TOPIC AGENTS

When you start Topic Agents, a special workspace configuration is checked to identify which document
collections, topic knowledgebases, and personal agents should be opened for you. By default, Verity’s demo
database is selected for your use and the exercises in this guide have been written to take advantage of the
information contained in this demo. Later, you will want to change your workspace configuration to point at
your document collections, knowledgebases and agents.

Starting Topic Agents

Simply double-click on the Topic Agents icon to start your session

Connection Information

Double-click on the Topic Agents icon while holding down the Ctrl key to access the Connect dialog.
You can also edit the command line under the Topic Agents Properties and add a space, then a -s to the
end of the command line. This will cause the dialog to appear each time you start Topic Agents. See
Appendix B: Connection Alternatives in for more information.

Opening an Agent

Agents available to you are presented on the Agent Manager. This button bar allows you to pick the agent you
wish to open with just a click of the mouse.

The agent keeps track of the collections you want to search, the topics, words or field values you want to search
for, and even the presentation of results, including the field information to be displayed and the order and sorting
of this information.

__
 - 40 -

You can have many agents and each one can look at information in a unique way. The agent is designed to
provide a shortcut for targeting just what you want to search for. Agents can be shared throughout your
organization.

To help you get started, Verity ships a demo agent called Demo DB. This agent has a number of document
collections you can search, along with a number of topics (pre-defined subjects) you can search with.

The Demo DB Agent

Simply click on the demo agent displayed in the Agent Manager

Selecting Collections

Collections represent groups of documents that have been processed so they are retrievable by Topic Agents.
During processing, optimized indexes are automatically created to enable fast searching of words contained in the
documents or attribute information about the documents like their titles or authors.

Available Collections

View the collections you may search by clicking on the Collections tab. Collections can be presented
hierarchically, as shown in the demo. To see sub-collections, click the plus sign next to the collection
name.

Enable/Disable Collections

Collections are searchable when a checkmark is displayed in the gray box next to the collection name.
Simply click the gray box until the checkmark appears to ready the collection. This is a toggle switch
(on-off). If you do not wish to include a particular collection’s documents in your search, you simply
disable by clicking the gray box until the checkmark goes away.

__
 - 41 -

SELECTING TOPICS

Topics are pre-defined subjects designed to target a specific group of documents. For example, if you are
interested in documents about sports in general, you can create a topic that includes all the typical words you
would search for related to sports. Topics can be organized effectively into a group of sub-topics and each of
these can be used independently or with other topics or search words. Topic Agents presents lists of Topic
subjects organized in knowledgebases.

Available Topics
View topics you may search with by clicking on the Topics tab. Topics can be presented hierarchically,
as they are in the demo. To see sub-topics, click the plus sign next to the topic name.

Enable/Disable Topics

Topics are enabled (on) when the checkmark is present, and are disabled (off) when the checkmark is
absent.

Customizing Views

There are four views available to you when you are working with Topic Agents. The Custom View (first toolbar
button) presents the most information on screen. The Hide Topics/Collections (second toolbar button) view
provides more information for your query. The Full Results (third toolbar button) view provides more
information for the results list. The Full Document view (fourth toolbar button) provides more information for
reading the document.

__
 - 42 -

Changing your View

Click the appropriate toolbar button or select the view from the view menu.

Navigating Lists and Documents

You can move between documents on the list and between highlights in the document by using toolbar buttons
or quick keys. These options are also available on the Document menu.

Previous Document Click previous document toolbar button (first one) or F9

Next Document Click next document toolbar button (second one) or F8

Previous Highlight Click previous highlight toolbar button (third one) or Shift+F9

Next Highlight Click next highlight toolbar button (fourth one) or Shift+F8

Search for Text Use Ctrl-F to specify a string of text to search within the document you are
reviewing

Searching by Fields

Sometimes it is more helpful to search information about your documents than the information contained in
them. For instance, you may be looking for a particular type of document, or wish to search documents by title
or within a date range. This kind of information is contained in fields and you can query against any of the fields
defined for your Topic Collections.

Adding Query Fields
To add query field to the query window, open the Configure menu and choose Fields. Click on the
field to add from the list of Available Fields, then click the Move button. You can specify the type (field
or zone) if your DBA has defined zones for your collection. To remove a field, simply highlight it under
Query Fields and move it back to Available Fields. Click OK.

__
 - 43 -

Changing Field Order

You can easily change the order of fields appearing in Topic Agents. The current order is displayed under Query
Fields. Highlight the field to re-order and click Move Up or Down.

Specifying Importance

You can indicate how important each part of your query is. Choices are Required, Important, Nice,
Optional, Exclude.

Customizing Results

You can specify the fields to be displayed on your results list and the order of the fields. You can dynamically
adjust the length to be given to any field and can move fields around on the fly.

Adding Fields to Results

To add field to your results list, open the Configure menu and choose Fields. Click on the second tab to move to
the Results Fields. Highlight the field to add from the list of Available Fields, then click the Move button. You can
specify the alignment and can provide a different column heading than the field name if desired. To remove a
field, simply highlight it under Items in Results and move it back to Available Fields. Click OK.

Changing Field Order

You can easily change the order of fields appearing in Topic Agents. The current order is displayed under Items
in Results. Highlight the field you wish to re-order and click the Move Up or Move Down button.

__
 - 44 -

Changing Field Display

You can change the width given to a particular field by pulling the vertical bar between the fields left or right to
change the display. You can also grab the field name and move the entire column to a new position from the
results list (similar to Move).

Customizing Sorting

You can specify how fields will be sorted on your results list and you can specify more than one field. Keep in
mind that default sorting is by Score so that you are seeing the most relevant document first.

Changing Sort Fields

To sort fields on your results list, open the Configure menu and choose Fields. Click on the third tab to move to
Sorting. Highlight the field to add from the list of Available Fields, then click the Move button. You can specify
whether sorting is to be in ascending or descending order. To remove a field, simply highlight it under Items in
Results and move it back to Available Fields. Click OK.

Changing Sort Order

You can easily change the sort order of fields appearing in Topic Agents. The current order is displayed
under Sort By. Highlight the field you wish to re-order and click the Move Up or Move Down button.

Query Types

There are four query types available within Topic Agents and each one looks at information in a unique way.

Query By Full Text Searches based on words, phrases and topics you enter. This is the
default query type.

Query By Example Searches based on blocks of text you type or paste in, to locate
documents like ones already found.

Field Query Searches based on values you enter for query fields that have been defined
for your collections.

__
 - 45 -

Zone Query Searches the text contained within particular regions of your documents,
which have been defined as zones by your DBA.

CREATING PERSONAL AGENTS

It is very easy to create a new agent. If you are starting completely from scratch you will define four things.

• Your agent’s special properties (name, type, icon, etc.)
• Where your agent will search (collections)
• What your agent will look for (query type and topics, fields, or words)
• How your agent will present matching results to you (results list, view type)

Defining Agent Properties

Agent Properties are organized under three tabs: General, Pictures, Information. Each tab contains information
about the particular agent you are creating.

General Properties

Name the agent a brief descriptive name (like email). Save Agent in File field shows the automatically created
name of the actual file that contains your specifications. If you are saving an agent on the Server, you will not see
the file name. Search Type refers to whether this agent will search continuously (Watcher) or only when you
activate it (Searcher). Max Docs lets you set the maximum number of documents you want to see on the results
and the Query Threshold refers to the minimum score each document much achieve in order to be qualified as a
match.

__
 - 46 -

Pictures

The Picture properties allow you to select a picture, or icon, which will display when your agent is passive (no
new information has arrived) or, if your agent is a watcher, active (new information is available).

Information

The Information properties allow you to describe your agent. It also display information about author and
modification dates.

__
 - 47 -

LAB EXERCISE - ADDING AN ENTERPRISE SERVER

1. Open a Command Prompt window and move to the Server Admin directory under the install directory for

the Enterprise Server (c:\verity\s97ent\tes222\admin). Create your own server configuration file by
copying the topicsvr.nti configuration file:

 copy topicsvr.nti mysvr.cfg

 You could edit this file from here, making all the needed updates for port numbers and access to collections

but you can also edit this file from within the Search'97 Enterprise Server Administration. For now, edit
mysvr.cfg using wordpad.

2. Update the following sections in your configuration file, make sure to uncomment any that are commented

out. Note that the collections and topics you will be using are coming from the Enterprise Server’s demo
area. Note also that we are adding an accessQuestion to limit documents to those that are ASCII text.
The reason for this is that there is a bug in the current Topic Agents product related to viewing non-ASCII
data. This is scheduled to be corrected in the next release.

a. /serverSpec = TCP:54321
b. /messageOfTheDay = “Welcome to My Personal Server” (or some other fun
 message)
c. /startupCollection = c:\\verity\\s97ent\\demos\\colls.clm
d. /startupKB = c:\\verity\\s97ent\\demos\\bases.kbm
e. security: "LINK:0:VerityPassword
 c:\\verity\\s97ent\\tes222\\admin\\verity.pwd"

3. You may start the server using the Verity Service Administrator (Start Programs Verity

SEARCH’97 Enterprise Server Admin or at the Command Prompt by typing the following command line:

 c:\verity\s97ent\tes222\admin\topicsvr mysvr.cfg

 If you choose to start the server using Verity Service Administrator, from the Services menu, choose “Install
 Service.” Name your service, using your student id: train1 and click the “Browse” button to locate your
 config file (mysvr.cfg). Highlight the config file and click the “Open” button. This allows you to edit this file

from here.

4. Open a Command Prompt window and move to c:\verity\s97ent_nti31\bin. Here you will find the audit

log file that is tracking actions. Enter the following command to review the contents of this file:

 type nti31.log | more

5. Connect to your server using Topic Agents. Click on the icon on the desktop and select the Remote tab

for
 remote connection. Enter the following: (substituting your student number):

 topic Server Hostname: tcp:train1:54321
 username: guest
 password: guest

__
 - 48 -

6. When connected to the Enterprise Server, note the "Message of the Day" appears in the message window.

7. An Agent Manager also appears on your desktop. You currently have one agent created called "Demo DB",

double-click on the "Demo DB" agent button to launch Topic Agents.

8. Spend a few minutes exploring the Topic Agents window. Both menu bar and tool bar are located at the
 top of the Agent window. Take note that the Single Magnifying Glass button is the "Search" button. In the
 left window pane contains a list of demo Collections and Topics. On the top right window pane is the
 Query box, right underneath is the Results List area, and below is the Document View window.

9. Review the Collections, check the box in front of a collection you want to enable for searching. Enter

word(s) of your choice in the Query box, then press Enter or click the "Search" button on the tool
 bar. When documents appear in the Results List, double-click on a document to view it in the Document

View window.

10. Practice with more searching. Enter words or phrases, and/or select a topic(s) for searching, review your

results.

__
 - 49 -

 USING REGULAR EXPRESSIONS

Some style files require you to write pattern matching rules for capturing field information or for building word
tokens in the word index. Regular expressions are used to select strings of text from your documents that will be
used to populate fields in the Document Dataset VDB. When you write a regular expression you first define how
data is to be located and then define what data is to be retrieved. Regular expressions are made by combining
normal characters with a number of special characters. The character preceding the regular expression is the one
that the regular expression refers to. For example, a period (.) means match any character and period asterisk
(.*) means match any number of characters.

. Matches any single character except newline. Spaces are also treated as characters.
For example, p.p matches pep, pip, pcp, p p.

* Matches any number or none of the character immediately preceding.

For example, be*t matches bt (no e), bet (one e), or beet (any number of e's).

? Matches one or none of the character immediately preceding.

For example, chapters? matches chapter (no s) or chapters (one s).

+ Matches one or more of the character immediately preceding.

For example, Part .+ matches Part 1, Part 2, Part 11, or Part 1220.

$ Requires that the preceding character(s) must be at the end of a line.

^ Requires that the following character(s) must be at the start of a line.

\ Indicates to treat the following special character as an ordinary character.

For example, \. matches an actual period instead of "any single character" and \$ matches an
actual dollar sign instead of requiring the placement of the character to be at the end of the line.
Use a double backward slash when you want to include a backward slash as itself.

[] Matches any one of the characters within the brackets. For example, [AB] matches A or B.

[x-z] Matches any one of the characters within the range starting with the first character and ending

with the second character. For example, [0-9] looks for any number between 0 and 9.

[^] Matches anything but the characters, which follow within the brackets.

For example, [^a-z] looks for any character that is not a lowercase letter (this would find all
uppercase letters, numbers, spaces, and non-alphanumeric characters).

 [\] Most special characters lose their meaning within a bracket so you don't need to do anything

special to use them as ordinary characters. However, three characters do require an escape:
\ - ^.

(|) Matches either of the strings before and after the | which are enclosed in parentheses.

For example, Sub(j|ject) searches for both Subj and Subject.

\b Defines a backspace.

__
 - 50 -

\f Defines a formfeed.

\n Defines a newline.

\r Defines a carriage return.

\t Defines a tab.

\v Defines a vertical tab.

{ } Defines a symbol

< > Indicates to populate the field in the collection using only the substring enclosed within these
angle brackets.

__
 - 51 -

LAB EXERCISE - PRACTICING WITH REGULAR EXPRESSIONS

1. What do each of the following expressions search for?

 [0-9]

 [mnt]

 [r-z]

 [A-C]

 ^Title:

 \n

 [0-9]$

 DATE(:|LINE:)

 [Tt]he

 Volume [0-9]+

 *+

 s?

 [a-z]+\n

 [a-z0-9]$

2. Create expressions looking for the following:

 Any uppercase letter

 Any uppercase or lowercase letter

 Any digit, one or more occurrences

 Any character followed by newline

 Zero or more occurrences of newline

 Any uppercase letter followed by a colon and one or more digits

 One or more occurrences of any lowercase letter at the end of a line

 A colon followed by any number (including none) of spaces or tabs

 A single digit followed by a period

__
 - 52 -

 Two digits followed by a backslash

3. For each of the following expressions, write down what they are searching for.

 a. Title:.+

 b. [0-9]+/[0-9]+/[0-9]+$

 c. By[\t]*.*

 d. Subjects?:.*

 e. [A-Za-z]+ [0-9]+, [0-9]+

4. Match the expressions in the previous exercise to the following information:

 a. 12/09/90 _____

 b. By L. Doctorow _____

 c. Title: My Great Work _____

 d. April 1, 1991 _____

 e. Subject: DBA Anxieties _____

5. Create expressions to search for the following formats (don't try to match the specific information; assume

that it will vary):

 a. Title: Eliminating Paperwork
 Title: Relativity Theory Yet Again

 b. TITLE Miscellaneous Office Stories
 Title Whistling Messengers

 c. January 12 1990
 April 25, 89

 d. 9/12/89
 10/30/90

 e. 2
 2.1
 2.1.2

6. Check your answers on the pages that follow.

__
 - 53 -

REGULAR EXPRESSIONS ANSWERS

1. What do each of the following expressions search for?

[0-9] a number within the range of zero to nine
 [mnt] the lowercase letters m, n, or t
 [r-z] a lowercase letter within the range of r through z
 [A-C] an uppercase letter within the range of A through C
^Title: Title: at the beginning of a line
\n a newline
 [0-9]$ a number within the range of zero to nine found just before the end of a

line
DATE(:|LINE:) the words DATE: or DATELINE
 [Tt]he the words The or the
Volume [0-9]+ the word Volume followed by any number (but at least one) of digits

(Volume 1, Volume 126)
*+ any number (but at least one) of asterisks (***)
s? one or none of the letter s
 [a-z]+\n any number (but at least one) of lowercase letters up to the end of a line
 [a-z0-9]$ one lowercase letter or digit preceding the end of the line

2. Create expressions looking for the following:

 Any uppercase letter [A-Z]
 Any uppercase or lowercase letter [A-Za-z]
 Any digit, one or more occurrences [0-9]+
 Any character followed by newline .\n
 Zero or more occurrences of newline \n*
 Any uppercase letter followed by a colon and one or more digits [A-Z]:[0-9]+
 One or more occurrences of any lowercase letter at the end of a line [a-z]+$
 A colon followed by zero (none) or more spaces or zero (none) or more tabs :[\t]*
 A single digit followed by a period [0-9]\.
 Two digits followed by a backslash [0-9][0-9]\\

3. For each of the following expressions, write down what they are searching for.

 a. "Title:.+"
 The string Title: followed by any number of characters.

 b. "[0-9]+/[0-9]+/[0-9]+$"
 one or more digits followed by a slash, followed by one or more digits, followed by a

slash,
 followed by one or more digits, preceding the end of the line. This would likely be a
 date: 09/15/96 at the end of the line.

 c. "By[\t]*.*"

 The word By followed by any number of or no spaces or tabs, followed by any number
of or no characters.

__
 - 54 -

 d. "Subjects?:.*"
 The string Subject: or Subjects: followed by any number of any character.

 e. "[A-Za-z]+ [0-9]+, [0-9]+"
 Any number (but at least one) of uppercase or lowercase letters followed by a space then

one or more digits followed by a comma and a space, then one or more digits. This would
likely be a date: January 17, 1992 or Feb 1, 1950.

 4. Match the expressions in the previous exercise to the following information:

 12/09/90 B
 By L. Doctorow C
 Title: My Great Work A
 April 1, 1991 E
 Subject: DBA Anxieties D

 5. Create expressions to search for the following formats (don't try to match the specific information;

assume that it will vary):

 a. Title: Eliminating Paperwork
 Title: Relativity Theory Yet Again

 "Title:[\t]*.*"

 b. TITLE Miscellaneous Office Stories
 Title Whistling Messengers
 "(TITLE|Title)[\t]*.*"

 c. January 12 1990
 April 25, 89
 "[A-Z][a-z]+ [0-9]+,? [0-9]+"

 d. 9/12/89
 10/30/90
 "[0-9]+/[0-9]+/[0-9]+"

 e. 2
 2.1
 2.1.2
 "[0-9]\.?[0-9]?\.?[0-9]?"

__
 - 55 -

FIELD DEFINITION: STYLE.TDE

The style.tde file may be a key component for your collections when the information you want to capture for
fields, is actually contained within the document. Among other things, the style.tde file contains the rules to
follow for populating fields in the document dataset when there a lack of tagging or structure prevent the
automatic filtering of field information. Only those fields that have been defined in the style.ddd (through the
$include to the style.ufl) can be populated when the utilities are run to create the collection.

The Datamap Statement

The datamap statement identifies the section of the style.tde that will deal with the parsing of documents. This
statement specifies how data is to be mapped out in the collection. The datamap statement may have three
modifiers:

 /docsep = "<<End>>\n"
 /filter = "auto"
 /system = "system call"

The Field Statement

The field keyword identifies the rules for parsing data for a specified field name. A field keyword must be present
for each field that you want to appear in the collection and it must be an exact match for the corresponding field
identified in the style.ddd file.

 field: TITLE PATTERN "Title: <.*>"

Modifiers for field include:

/required field must be in document - yes or no (default is no)
/which how to behave when multiple instances are found
 (1,#,LAST,ALL)
/string-before insert string before the field
/string-between insert string between field values when many values for the

field exist
/string-after insert string after the field
/default value to be assigned if Topic does not find the value
/alsowrite allows you to store a parsed value in two fields (one for the

original field defined by the FIELD statement and one for the
/alsowrite field

The Define Statement

The define statement identifies a symbol that is associated with a pattern written as a regular expression. This
symbol can be included in another regular expression specified in the style.tde file.

 define: CHAR "[A-Za-z]+"
 define: SPACE "[\t]"

The Dispatch Statement

The dispatch keyword specifies the rules for populating the document dispatch field as defined in the style.ddd
file. Verity products display document text based on information provided by the dispatch keyword about where

__
 - 56 -

the document starts and ends. The document start and end can be identified by a line number or can be written
as a regular expression. The default is to dispatch the entire document.

 dispatch: DOC

Dispatch Modifiers

/required field must be in document - yes or no (default = no)
/start-line line on which document begins (default = 1)
/start-pattern pattern identified by regular expression for starting point
/end-line line on which document ends (default = end of file)
/end-pattern pattern identified by regular expression for ending point
/inclusive identifies if start/end patterns are included in dispatch field (yes

or no (default = no)

The Pre-process Section

This section is responsible for parsing and capturing field values in your documents.

While the parsing of field values is important, this section is also capable of performing other functionality. This
section can also assign values directly to fields, perform system calls which can execute any command or script file
that can normally be executed from your operating system’s command line, and can write status or informational
messages to either a log file.

The Form Section

The form section of the style.tde file configures what Topic Document Entry users see on their worklist. This
product provides graphical collection building features and the form is important as it allows users to enter, edit,
or validate field values for each document before documents are added to the collection. The only time the form
section is used is when you are using the TDE program.

The Post-processing Section

This last section in the STYLE.TDE file is used for final cleanup and processing of each document before the work
is submitted to the collection. Much like the pre-processing section, this section can assign field values, perform
system commands, and write messages to a log file.

There are several uses for the post-processing section. The first is transferring document files from one location
to another after they have been validated. Documents may be placed in a common directory as they are created
or downloaded or scanned. Another good purpose for the post-processing section is to hide or alter field values
after the user has validated the field. For instance, you may have a field called author. While the documents may
show an author name of Author #1, your style file knows that the real author name for Author #1 should be K.
Vadasz. In this case, pre-processing might capture a default value, which could be reassigned in post-processing.

SAMPLE STYLE.TDE FILE

$control:1
tde:
{
 pre-process:
 /relative-path = yes
 {

__
 - 57 -

 datamap:
 /filter = auto
 {
 field: Subject PATTERN "Subject[\t]*<.*>"
 /default = “Needs Subject”
 dispatch: DOC
 }
 log: vde-log "Finished pre-processing -- $DOC_FN"
 message: "Finished pre-processing -- $DOC_FN"
 }
 form:
 {
 field: "Subject"
 /width = 60
 /height = 3
 {
 validate: not null
 }
 }
 post-process:
 {
 label: DonePOST
 log: vde-log "Finished Post-Processing -- $DOC_FN"
 }
}

$$

__
 - 58 -

LAB EXERCISE - EXPLORING STYLE FILES

1. Using the TDEASCII style files as a starting template, create a new set of style files called “mystyle” In the

c:\is97\styles directory. It is easiest to do this from Windows. (Copy the TDEASCII style directory and
rename the copy).

2. Edit the style.ddd to add a new field called “editor.” Make this a variable width field and place it toward
the bottom of the file with the rest of the user-defined fields.

 …
varwidth: Filetime dv4 # System Date and Time on File
varwidth: Editor dv5 # Document Editor Field

3. Edit the style.tde file. Note the three areas: pre-processing, form and post-processing. The form
 section is only used when you have the Topic Document Entry product. This product allows you to

view values, validate data entry, etc. as documents are added to the collection. The only section you will
use is pre-process.

4. Review the information under this section noting the following:

 a. The collection is to be built using relative path
 b. The document separator for multi-document files is set

c. The parsing rules for existing fields show variations and, in some cases default values to be used if a
matching pattern is not found within the document

d. Additional processing is happening related to the date. In this case, if no match is found on the date
pattern, a default of 1/1/80 will be assigned. If the date is 1/1/80, the indexer is to look up the system
date and time for the file, and reassign this value. In this way, even if the parsing doesn’t produce a
good date, the reassignment to the system date and time will get you closer to a true date.

5. Add the editor field. Write the regular expression to capture this field from the document

based on the example below and add a default value for editor using your first and last name.
Be sure to write the expression so it captures Editor, editor, and EDITOR.

Title: A Tale of Styles
Author: Cindy Johnson
Editor: Kathy Vadasz
Date: June 20, 1997
Source: SEARCH’97 Class

Style files allow you to configure the collection. Options you select
have an impact on the content and operation of the collections you build.

6. Create a new document directory (c:\is97\docs\doc8) and create 2 documents in the format
 shown above. In the first document, build a value for each field as shown. In the second
 document leave out some of the information to allow the defaults to be used (as shown below).

Title: Collection Building
Author: Cathy Ferrario
Source: SEARCH’97 Enterprise Program

Collection building is lots of fun!

__
 - 59 -

7. Build a new collection, ensuring the following:

 a. The collection is added to the main collection directory
 b. You use the new style files you just created
 c. You use the documents you created
 d. You create a batch file in the tools directory with an associated log file

e. You test the collection using rc-vdk to search the words you entered and browse to see the values
captured in your fields.

8. For this same collection, edit the style.dft and add the Editor field information (with a label like the

other fields) just before the source field. This is the one style file that can be changed dynamically. Run
rc-vdk again, to view the document and you will notice that the new field information displays in the
“virtual document” you are creating.

9. Create a stop list (style.stp) in your style directory – as shown below:

the
it
your last name

10. Delete the collection you just created (easiest from Windows - just delete the whole directory) and then

rebuild the collection using your batch file. This time, words will be stopped, simply because you put that
style file in the style directory.

Use rc-vdk to try to search for the words that have been stopped. As you read through documents you see the
words are still there because stopping words does not affect the actual document. They are simply not in the
word index. Also, keep in mind that the word index is case sensitive, and you have only stopped the specific case
variation you see in the file. If you stop “the” but not “The” and then search on “the” - you will find documents.
Why? Because the search engine by default searches case-insensitive. But, if you instead query on <case>”the”
- no results will be found.

